Nanopositioning for storage applications

نویسنده

  • Evangelos Eleftheriou
چکیده

In nanotechnology applications, nanopositioning, i.e., nanometer-scale precision control at dimensions of less than 100 nm, plays a central role. One can view nanopositioners as precision mechatronics systems aiming at moving objects over a certain distance with a resolution that could be as low as a fraction of an Ångström. Actuation, position sensing and feedback control are the key components of nanopositioners that determine how successfully the stringent requirements on resolution, accuracy, stability, and bandwidth are achieved. Historically, nanopositioning has played a critical role in scanning probe microscopy (SPM), and it appears that it will play a crucial role in emerging applications such as lithography tools and semiconductor inspection systems, as well as in molecular biology, nanofabrication, and nanomanufacturing. Moreover, it is becoming an important requirement in storage systems, ranging from novel probe-based storage devices to mechatronic tape-drive systems, to support the high areal density or storage capacity needs. This paper will review control-related research in nanopositioning for two extreme cases of data-storage systems, namely, in probe and in tape storage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Bandwidth Control of a Piezoelectric Stage in the Presence of Rate-dependent Hysteresis

Piezoelectric nanopositioning actuators are widely employed in many applications, including the hard disk drives [1–3], gyroscopes [4] and the scanning probe microscopes [5]. Besides the precise position control, high-bandwidth tracking control is crucial for the applications of piezoelectric actuators, since, for example, it will allow hard disk drives to meet the demand for higher data storag...

متن کامل

Model Development and Inverse Compensator Design for High Speed Nanopositioning

This paper focuses on the development of constitutive models, commensurate system models, and inverse compensator construction for high speed nanopositioning in atomic force microscopes (AFM). All current AFM employ either stacked or cylindrical piezoceramic actuators for both longitudinal and transverse positioning of the sample. An inherent property of these materials is the presence of hyste...

متن کامل

Calibration of Nanopositioning Stages

Accuracy is one of the most important criteria for the performance evaluation of microand nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many application...

متن کامل

Control Strategies and Motion Planning for Nanopositioning Applications with Multi-axis Magnetic-levitation Instruments

Control Strategies and Motion Planning for Nanopositioning Applications with Multi-Axis Magnetic-Levitation Instruments. (May 2007) Huzefa Shakir, B. Tech. (Honors), Indian Institute of Technology, Kharagpur Chair of Advisory Committee: Dr. Won-jong Kim This dissertation is the first attempt to demonstrate the use of magnetic-levitation (maglev) positioners for commercial applications requiring...

متن کامل

Preloading Piezoelectric Stack Actuators in High-Speed Nanopositioning Systems

Recent development in high-speed nanotechnology applications, such as scanning probe microscopy and nanofabrication, has increased interest on the advancement of high-bandwidth flexure-guided nanopositioning systems. These systems are capable of providing motions with sub-nanometer resolution over a positioning bandwidth of a few kilohertz or more. High-speed nanopositioning devices are commonl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annual Reviews in Control

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012